Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: covidwho-2281480

ABSTRACT

Vitamin D performs a differentiating, metabolic and anti-inflammatory function, through genomic, non-genomic and mitochondrial mechanisms of action [...].


Subject(s)
Receptors, Calcitriol , Vitamin D , Humans , Vitamin D/metabolism , Receptors, Calcitriol/metabolism , Vitamins/metabolism , Mitochondria/metabolism
2.
Anticancer Res ; 42(10): 5043-5048, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2056774

ABSTRACT

BACKGROUND/AIM: Identify potential mechanisms involving gene expression changes through which vitamin D supplementation could be beneficial in preventing adverse COVID-19 outcomes. MATERIALS AND METHODS: We performed a literature review to identify differentially expressed genes (DEGs) in the blood between severe and mild COVID-19 patients. We compared these with the top DEGs induced by 6 months of 10,000 IU/day vitamin D supplementation in healthy adults who were vitamin D deficient/insufficient. We used bioinformatic tools to look for a vitamin D response element (VDRE) in DEGs. RESULTS: FOLR3, RGS1, GPR84, and LRRN3 were the most significantly altered genes by 6 months of 10,000 IU/day vitamin D supplementation whose expression levels were also involved in COVID-19 severity. FOLR3 and GPR84 were found to be consistently up-regulated and RGS1 and LRRN3 consistently down-regulated in severe COVID-19 infection. FOLR3 and LRRN3 were down-regulated and RGS1 and GPR84 were up-regulated by 10,000 IU/day vitamin D supplementation. CONCLUSION: FOLR3 and RGS1 are expressed in neutrophils and lymphocytes, respectively. Vitamin D supplementation may decrease the neutrophil-lymphocyte ratio as has been reported in patients admitted with severe symptoms. There is evidence that vitamin D directly influences the expression of the RGS1 gene through vitamin D receptor binding. A potential negative VDRE (nVDRE) in an intron of the FOLR3 gene was found, which was homologous with two known nVDREs. Combined with other transcription factor elements near the newly identified nVDRE, these observations may explain the mechanism by which vitamin D regulates these genes, thus influencing COVID-19 outcomes.


Subject(s)
COVID-19 Drug Treatment , Carrier Proteins , Vitamin D Deficiency , Vitamin D , Adult , Carrier Proteins/genetics , Folic Acid , Humans , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Transcription Factors/metabolism , Vitamin D/therapeutic use , Vitamin D Deficiency/prevention & control , Vitamins/therapeutic use
3.
Nutrients ; 14(12)2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1896905

ABSTRACT

Calcifediol is the prohormone of the vitamin D endocrine system (VDES). It requires hydroxylation to move to 1,25(OH)2D3 or calcitriol, the active form that exerts its functions by activating the vitamin D receptor (VDR) that is expressed in many organs, including the lungs. Due to its rapid oral absorption and because it does not require first hepatic hydroxylation, it is a good option to replace the prevalent deficiency of vitamin D (25 hydroxyvitamin D; 25OHD), to which patients with respiratory pathologies are no strangers. Correcting 25OHD deficiency can decrease the risk of upper respiratory infections and thus improve asthma and COPD control. The same happens with other respiratory pathologies and, in particular, COVID-19. Calcifediol may be a good option for raising 25OHD serum levels quickly because the profile of inflammatory cytokines exhibited by patients with inflammatory respiratory diseases, such as asthma, COPD or COVID-19, can increase the degradation of the active metabolites of the VDES. The aim of this narrative revision is to report the current evidence on the role of calcifediol in main respiratory diseases. In conclusion, good 25OHD status may have beneficial effects on the clinical course of respiratory diseases, including COVID-19. This hypothesis should be confirmed in large, randomized trials. Otherwise, a rapid correction of 25(OH)D deficiency can be useful for patients with respiratory disease.


Subject(s)
Asthma , COVID-19 Drug Treatment , Pulmonary Disease, Chronic Obstructive , Asthma/drug therapy , Calcifediol , Cholecalciferol/therapeutic use , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptors, Calcitriol/metabolism , Vitamin D/therapeutic use , Vitamins
4.
J Histochem Cytochem ; 70(5): 391-399, 2022 05.
Article in English | MEDLINE | ID: covidwho-1770632

ABSTRACT

Morphological data on heart damage and its mechanisms due to extremely severe course of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are limited, as well as data on the correlation of damage and expression of vitamin D receptors (VDRs). In this study, we analyzed a series of myocardial samples obtained during postmortem autopsy of 48 critically ill patients with COVID-19 who died with SARS-CoV-2-associated pneumonia. The purpose of the study was to evaluate immunohistochemical VDR expression in the myocardium. The results showed the only minimal or no immunohistochemical expression of VDR in the nuclei of cardiomyocytes in most cases, along with the persisted strong expression in lymphoid cells. To the best of our knowledge, it is the first study and data provided were regarding myocardial VDR expression in COVID-19 patients. The results are of interest in terms of further study of the effects of ligand-associated VDR activation on the cardiovascular system.


Subject(s)
COVID-19 , Autopsy , Humans , Myocardium/metabolism , Myocytes, Cardiac , Receptors, Calcitriol/metabolism , SARS-CoV-2
6.
Nat Immunol ; 23(1): 62-74, 2022 01.
Article in English | MEDLINE | ID: covidwho-1514418

ABSTRACT

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Subject(s)
Interferon-gamma/immunology , Interleukin-10/immunology , SARS-CoV-2/immunology , Th1 Cells/immunology , Vitamin D/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Bronchoalveolar Lavage Fluid/cytology , COVID-19/immunology , COVID-19/pathology , Complement C3a/immunology , Complement C3b/immunology , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Lymphocyte Activation/immunology , Receptors, Calcitriol/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , STAT3 Transcription Factor/metabolism , Signal Transduction/immunology , Transcription, Genetic/genetics
7.
Nutrients ; 13(11)2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1480891

ABSTRACT

Vitamin D has many effects on cells in the immune system. Many studies have linked low vitamin D status with severity of COVID-19. Genetic variants involved in vitamin D metabolism have been implicated as potential risk factors for severe COVID-19 outcomes. This study investigated how genetic variations in humans affected the clinical presentation of COVID-19. In total, 646 patients with SARS-CoV-2 infection were divided into two groups: noncritical COVID-19 (n = 453; 70.12%) and a critical group (n = 193; 29.87%). Genotype data on the GC, NADSYN1, VDR, and CYP2R1 genes along with data on serum 25-hydroxyvitamin D levels were compiled in patients admitted to a major hospital in the United Arab Emirates between April 2020 and January 2021. We identified 12 single-nucleotide polymorphisms associated with the critical COVID-19 condition: rs59241277, rs113574864, rs182901986, rs60349934, and rs113876500; rs4944076, rs4944997, rs4944998, rs4944979, and rs10898210; and rs11574018 and rs11574024. We report significant associations between genetic determinants of vitamin D metabolism and COVID-19 severity in the UAE population. Further research needed to clarify the mechanism of action against viral infection in vitamin D deficiency. These variants could be used with vaccination to manage the spread of SARS-CoV-2 and could be particularly valuable in populations in which vitamin D deficiency is common.


Subject(s)
COVID-19/genetics , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/genetics , Cholestanetriol 26-Monooxygenase/genetics , Cytochrome P450 Family 2/genetics , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Vitamin D/analogs & derivatives , Adult , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism , Cholestanetriol 26-Monooxygenase/metabolism , Cytochrome P450 Family 2/metabolism , Female , Humans , Male , Middle Aged , Receptors, Calcitriol/metabolism , Severity of Illness Index , United Arab Emirates , Vitamin D/blood
8.
Rev Esp Geriatr Gerontol ; 56(3): 177-182, 2021.
Article in English | MEDLINE | ID: covidwho-1108648

ABSTRACT

The coronavirus disease 2019 (COVID-19) produces severe respiratory symptoms such as bilateral pneumonia associated to a high morbidity and mortality, especially in patients of advanced age. Vitamin D deficiency has been reported in several chronic conditions associated with increased inflammation and dysregulation of the immune system. Vitamin D in modulates immune function too. Vitamin D receptor (VDR) is expressed by most immune cells, including B and T lymphocytes, monocytes, macrophages, and dendritic cells and the signalling of vitamin D and VDR together has an anti-inflammatory effect. Some studies have reported that vitamin D treatment could be useful for the prevention and treatment of COVID-19 because vitamin D plays an important role as a modulator of immunocompetence. Over the last few months, some studies have hypothesized the possible beneficial effect of vitamin D supplementation in patients with COVID-19 in order to improve the immune balance and prevent the hyperinflammatory cytokine storm. Some preliminary studies have already shown promising results with vitamin D supplementation in hospitalized COVID-19 patients. Vitamin D should be administered daily until adequate levels are achieved due to vitamin D behaves as a negative acute phase reactant (APR). Despite the lack of evidence on specific doses of vitamin D to treat COVID-19 in older adults, authors consider it is necessary to standardize the use in clinical practice. These recommendations advice supplement vitamin D in a protocoled fashion based on expert opinions, level of evidence 5.


Subject(s)
COVID-19/therapy , Cytokine Release Syndrome , Dietary Supplements , Geriatrics , Vitamin D Deficiency/therapy , Vitamin D/administration & dosage , Vitamins/administration & dosage , Aged , COVID-19/complications , COVID-19/immunology , COVID-19/prevention & control , Cytokine Release Syndrome/prevention & control , Humans , Receptors, Calcitriol/metabolism , Societies, Medical , Spain , Vitamin D/immunology , Vitamin D Deficiency/complications , Vitamins/immunology
9.
Cell Immunol ; 360: 104259, 2021 02.
Article in English | MEDLINE | ID: covidwho-978233

ABSTRACT

Vitamin D regulates homeostasis, anti-microbial response, and inflammation. The vitamin D receptors are expressed in the macrophages and other immune cells, regulating the transcription of many different genes, including those coding the anti-microbial peptides. One of the most severe complications of the SARS-CoV-2 infection is the acute respiratory distress syndrome (ARDS) caused by the hyperinflammatory response (commonly called cytokine storm) of the lung macrophages. Studies showed that Vitamin D deficiency increases the severity of the ARDS in COVID-19 infection. We discuss here how the vitamin D supplementation may influence macrophage and myeloid-derived suppressor cells (MDSCs) inflammatory response, subdue the hyperinflammatory response, and lessen the ARDS in COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19/pathology , Lung/pathology , Vitamin D/administration & dosage , Vitamins/administration & dosage , Animals , COVID-19/complications , COVID-19/immunology , Child , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Inflammation/prevention & control , Lung/immunology , Macrophages/immunology , Macrophages/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Receptors, Calcitriol/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/prevention & control
11.
Int J Mol Sci ; 21(18)2020 Sep 08.
Article in English | MEDLINE | ID: covidwho-831006

ABSTRACT

Vitamin D is a steroid hormone classically involved in the calcium metabolism and bone homeostasis. Recently, new and interesting aspects of vitamin D metabolism has been elucidated, namely the special role of the skin, the metabolic control of liver hydroxylase CYP2R1, the specificity of 1α-hydroxylase in different tissues and cell types and the genomic, non-genomic and epigenomic effects of vitamin D receptor, which will be addressed in the present review. Moreover, in the last decades, several extraskeletal effects which can be attributed to vitamin D have been shown. These beneficial effects will be here summarized, focusing on the immune system and cardiovascular system.


Subject(s)
Vitamin D/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Animals , Bone and Bones/metabolism , Calcitriol/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 2/metabolism , Homeostasis , Humans , Lipid Metabolism , Mixed Function Oxygenases/metabolism , Receptors, Calcitriol/metabolism , Skin/metabolism , Vitamin D3 24-Hydroxylase/metabolism
12.
Nutrients ; 12(5)2020 Apr 27.
Article in English | MEDLINE | ID: covidwho-828212

ABSTRACT

The last couple of decades have seen an explosion in our interest and understanding of the role of vitamin D in the regulation of immunity. At the molecular level, the hormonal form of vitamin D signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor. The VDR and vitamin D metabolic enzymes are expressed throughout the innate and adaptive arms of the immune system. The advent of genome-wide approaches to gene expression profiling have led to the identification of numerous VDR-regulated genes implicated in the regulation of innate and adaptive immunity. The molecular data infer that vitamin D signaling should boost innate immunity against pathogens of bacterial or viral origin. Vitamin D signaling also suppresses inflammatory immune responses that underlie autoimmunity and regulate allergic responses. These findings have been bolstered by clinical studies linking vitamin D deficiency to increased rates of infections, autoimmunity, and allergies. Our goals here are to provide an overview of the molecular basis for immune system regulation and to survey the clinical data from pediatric populations, using randomized placebo-controlled trials and meta-analyses where possible, linking vitamin D deficiency to increased rates of infections, autoimmune conditions, and allergies, and addressing the impact of supplementation on these conditions.


Subject(s)
Adaptive Immunity , Autoimmunity , Child Nutritional Physiological Phenomena/immunology , Dietary Supplements , Immunity, Innate , Immunologic Factors , Vitamin D/pharmacology , Vitamin D/physiology , Age Factors , Autoimmune Diseases/etiology , Child , Child, Preschool , Communicable Diseases/etiology , Female , Humans , Hypersensitivity/etiology , Infant , Male , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/physiology , Signal Transduction/physiology , Vitamin D/metabolism , Vitamin D Deficiency/complications , Vitamin D Deficiency/immunology
13.
Cell Metab ; 32(5): 704-709, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-753751

ABSTRACT

SARS-CoV-2 pneumonitis can quickly strike to incapacitate the lung, leading to severe disease and sometimes death. In this perspective, we suggest that vitamin D deficiency and the failure to activate the vitamin D receptor (VDR) can aggravate this respiratory syndrome by igniting a wounding response in stellate cells of the lung. The FDA-approved injectable vitamin D analog, paricalcitol, suppresses stellate cell-derived murine hepatic and pancreatic pro-inflammatory and pro-fibrotic changes. Therefore, we suggest a possible parallel program in the pulmonary stellate cells of COVID-19 patients and propose repurposing paricalcitol infusion therapy to restrain the COVID-19 cytokine storm. This proposed therapy could prove important to people of color who have higher COVID-19 mortality rates and lower vitamin D levels.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Drug Repositioning/methods , Ergocalciferols/pharmacology , Ergocalciferols/therapeutic use , Pneumonia, Viral/drug therapy , Receptors, Calcitriol/agonists , Wound Healing/drug effects , Animals , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Mice , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Calcitriol/metabolism , SARS-CoV-2 , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/epidemiology
14.
Am J Ther ; 27(5): e485-e490, 2020.
Article in English | MEDLINE | ID: covidwho-721031

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has infected more than 4.4 million people and caused more than 300,000 deaths partly through acute respiratory distress syndrome with propensity to affect African American and Hispanic communities disproportionately. Patients with worse outcomes have exhibited higher blood plasma levels of proinflammatory cytokines. Activation of the vitamin D receptor expressed on immune cells has been shown to directly reduce the secretion of inflammatory cytokines, such as interleukin-6, and indirectly affect C-reactive protein. AREAS OF UNCERTAINTY: The significance of the vitamin D pathway in patients diagnosed with COVID-19. THERAPEUTIC INNOVATION: Vitamin D supplementation in patients after diagnosis of COVID-19. PATIENTS AND PHARMACOLOGICAL INTERVENTIONS: We report 4 vitamin D deficient patients diagnosed with COVID-19 in April 2020 who were provided with either cholecalciferol of 1000 IU daily (standard dose) or ergocalciferol 50,000 IU daily for 5 days (high dose) as part of supplementation. CLINICAL OUTCOMES: Patients that received a high dose of vitamin D supplementation achieved normalization of vitamin D levels and improved clinical recovery evidenced by shorter lengths of stay, lower oxygen requirements, and a reduction in inflammatory marker status. CONCLUSIONS: Vitamin D supplementation may serve as a viable alternative for curtailing acute respiratory distress syndrome in patients in underserved communities where resources to expensive and sought-after medications may be scarce. Randomized clinical trials will serve as an appropriate vessel to validate the efficacy of the therapeutic regimen and dissection of the pathway.


Subject(s)
Betacoronavirus/isolation & purification , Cholecalciferol/administration & dosage , Coronavirus Infections , Ergocalciferols/administration & dosage , Pandemics , Pneumonia, Viral , Vitamin D Deficiency , Adult , C-Reactive Protein/analysis , COVID-19 , Comorbidity , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Dietary Supplements , Female , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Oxygen Inhalation Therapy/methods , Oxygen Inhalation Therapy/statistics & numerical data , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Receptors, Calcitriol/metabolism , SARS-CoV-2 , Treatment Outcome , Vitamin D Deficiency/diagnosis , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/metabolism , Vitamins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL